Isabelle Ho

Luis Dorfmann
Numerical Methods
17 December 2025

Title:
Moon Rover Wheel Coefficient

Description:

This program solves for the minimum viable value of static friction coefficient between a rover’s
wheels and the moon that allows the rover to surmount a hill whose profile is modeled by a user
set function. The final value is dependent on a series of parameters that have both a default value
and are settable by the user before running the script.

Inputs:
Separated by entity, here are the largely customizable inputs:

e Rover: Wheel diameter, friction coefficient, initial velocity, hill profile, hill distance,

motor torque, force of gravity of the moon (CONST), weight

e Simulation: maximum timestep, minimum and maximum H
Note: gravitational force of the moon is set as a constant to maintain the use case of the program.
A maximum hill size is not assumed to be large enough for the gravitational pull of the moon to
vary with height.

Outputs:
e (Calculates torque and net forces in order to determine if the rover can surmount the hill
o Recurses the problem with a higher/different coefficient of friction if the rover is
unable to make it up the hill

o States the problem problem is not possible with the chosen inputs if 1k = 1
e Prints out all final calculated values
e C(reates plots of the distance the rover was able to make it up the hill relative to the
coefficient of friction of its wheels for various methods

https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu_k%20%3D1#0

Appendix I, Simulation and Mathematical Details:

The coefficient of friction is static because there is no slippage in the wheel at the moment it
turns. The net force on the rover (positive directionally defined as moving up the hill) is given by
the following equation:

Fnet - Fmotor - Fdrag - Fgravity

The uphill motor force is limited by the coefficient of friction, as low contact/interactions with
the hill leads to slippage and inefficient use of the motor. Thus, the MATLAB minimum function
is used to determine the upwards force:

. (T
min (—, [hsMg COS 9)
r
The drag force is defined:

2
o= cpal?’

However, space is in a vacuum and therefore there is no fluid for the rover to be moving through.

p=0. Thus, drag force can be discounted and the surface area/relative size of the rover is
irrelevant. The gravitational force downwards along the slope:

mgsin 6

m and 6 are user defined, and ¢ = 1.62 m/s by Nasa’s published research.

Numerical Methods:

Runge Kutta (Dormand—Prince) through ode45() MATLAB function
Bisection Method

Secant Method for root finding

Newton Style Shooting

https://www.codecogs.com/eqnedit.php?latex=F_%7Bnet%7D%20%3D%20F_%7Bmotor%7D%20-%20F_%7Bdrag%7D%20-%20F_%7Bgravity%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7Bmin%7D%5Cleft(%5Cfrac%7B%5Ctau%7D%7Br%7D%2C%20%5Cmu_smg%5Ccos%5Ctheta%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=F_D%20%3D%20C_DA%5Cfrac%7B%5Crho%20V%5E2%7D%7B2%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Crho%20%3D%200#0
https://www.codecogs.com/eqnedit.php?latex=mg%5Csin%5Ctheta#0
https://www.codecogs.com/eqnedit.php?latex=m#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta#0
https://www.codecogs.com/eqnedit.php?latex=g%20%3D%201.62#0

Appendix II, Outputs:
Case 1: All methods converge and a 4 of 0.45 is estimated. Initial values: mass = 50 kg, radius =

0.1 meters, torque = 100 Nm, initial velocity = 3.5 meters per second, Ap = 0.02, required
distance = 10 meters, function = 0.322, derivative of function = 0.3x

- Convergence Behavior of Different Numerical Methods
T I I T

T T I I T
—E— Sweep
10.5} |—&— Bisection 1
Secant M/
—&— Shootin i

10 g Reqmrgg_ Elance|
gel

? _
2
o

= |
£
o

C —
()
-
2

=z -

A B | |
0 0.05 01 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
i
RESULTS:

Sweep Method: mu = 0.46000
Bisection: mu = 0.44745
Secant Method: mu = 0.44750
Shooting Method: mu = 0.30000

Case 2: Steeper slope and slower initial velocity lead to a # outside of the target range. Attempts
to converge shown. Initial values: mass = 50 kg, radius = 0.1 meters, torque = 100 Nm, initial
velocity = 1.2 meters per second, Ap = 0.02, required distance = 10 meters, function = 0.622,
derivative of function = 1.2x

https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=0.3x%5E2#0
https://www.codecogs.com/eqnedit.php?latex=0.3x#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=0.6x%5E2#0
https://www.codecogs.com/eqnedit.php?latex=1.2x#0

Convergence Behavior of Different Numerical Methods

45 T I | | T |
—E— Sweep
40| | —E— Bisection .
Secant
—&— Shooting
35 .
@ 30 i
2
©
= 25- i
<
2 20t .
)
—
(@]
< 151 .
ol RequiedDistance
5 - -
O/ | | 1 | | | |

Sweep method did not converge
Bisection method did not converge
Shooting method did not converge

RESULTS:

Sweep Method: mu = 0.98000
Bisection: mu = 0.99994
Secant Method: mu = 2.19081
Shooting Method: mu = 0.30000

The best guesses for the sweep and bisection method are near one, as that was the set upper limit
for H. The secant method is open boundary, allowing it to solve for an accurate .

https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0

Appendix III, Code:

Ho.m
clear; clc;

% SET AND INITIAL VALUES
params.g = 1.62;
tol = le-4;
maxIter = 50;

gravitational force of the moon
tolerance for secant and shooting methods

o° oo oe

maximum iterations for secant and shooting methods

% USER ADJUSTABLE PARAMETERS

params.m = 50; % rover mass in kilograms
params.r = 0.1; % wheel radius in meters
params.Tm = 100; % motor torgque in newton meters
params.v0 = 1.2; % intial velocity before the hill
dmu = 0.02; % delta mu for ode4db5()

params.s_required 10; % required hill distance for a successful run
params.yfun = @(x) 0.6*x.72; % function profile of the hill

params.dydx = @(x) 1.2*x; derivative of the function profile of the hill

CALL FUNCTIONS
mus, mu s log, s s log] = sweep (params, dmu);

muse, mu_se log, s _se log] secant (0.1, 0.5, params, tol, maxIter);

shooting (0.3, params, tol, maxIter, dmu);

[

[mub, mu b log, s b log] = Dbisection(params, tol);
[

[mush, mu sh log, s sh log]

% PLOT RESULTS

figure;

plot(mu s log, s s log, 'o-', 'LineWidth', 1.5);

hold on;

plot (mu b log, s b log, 's-', 'LineWidth', 1.5);
plot (mu_se log, s se log, '#-', 'LineWidth', 1.5);
plot (mu _sh log, s sh log, 'd-', 'LineWidth', 1.5);
yline (params.s required, '--r', 'Required Distance');

xlabel ("\mu');

ylabel ('Arc Length Traveled'):;

title('Convergence Behavior of Different Numerical Methods');
legend('Sweep', 'Bisection', 'Secant', 'Shooting', 'Location', 'best"');
grid on;

% PRINT RESULTS

fprintf ("\nRESULTS:\n") ;

fprintf ('Sweep Method: mu = $.5f\n', mu_ s log(end));
fprintf ('Bisection: mu = %.5f\n', mu b log(end));
fprintf ('Secant Method: mu = %.5f\n', mu_se log(end));
fprintf ('Shooting Method: mu = $.5f\n', mu_sh log(end));

simulateRover.m
function s _end = simulateRover (mu, params)
params.mu = mu; $ set mu parameter if fed directly into function

y0 = [0; params.v0; 0]; % horizontal position, velocity, arc distance
travelled
tspan = [0 100];

options = odeset ('Events', @(t,y) stopEvents (t,y,params));

[t,y] = oded5(@(t,y) roverODE(t,y,params), tspan, y0, options);

s_end y(end, 3) ;

end

roverODE.m
function dydt = roverODE (~, y, params)

x = y(l); % horizontal position
v =vI(2); % velocity along slope
s = vI(3); % arc length

yp = params.dydx (x) ;
theta = atan(yp); % angle of slope

% FORCES
N = params.m * params.g * cos (theta); % normal force
F drive = min(params.Tm / params.r, params.mu * N); % motor force

% ACCELERATION
dvdt = (F drive - params.m * params.g * sin(theta)) / params.m;

% POSITION

dxdt = v * cos(theta); % horizontal position
dsdt = v; % arc position

dydt = [dxdt; dvdt; dsdt];

end

stopEvents.m

function [value, isterminal, direction] = stopEvents(~, y, params)
s = y(l); % pull arc position from array
v =vy(2); % pull velocity from array
value = [v - le-4; params.s_required - s];
isterminal = [1; 1]; % terminate if speed = 0
direction = [-1; -1]; % terminate if reaches required distance

end

distanceResidual.m
function res = distanceResidual (mu, params)
% DETERMINES IF THE ROVER MADE IT FAR ENOUGH TO CONSIDER A SUCCESS

s _end = simulateRover (mu, params);
res = s_end - params.s_required;
end
sweep.m
function [mu, mu s log, s s log] = sweep(params, dmu)
% INITIALIZE MU, PLOT ARRAYS
mu = 0;
mu s log = [];
s s log = [];
while mu <= 1
s_end = simulateRover (mu, params);
mu_s log(end+l) = mu;

s s log(end+1) s_end;

if s end >= params.s required % exit out and return mu if appropriate
distance
return
end
mu = mu + dmu; $ iterate mu by increasing it by user defined amount
end
disp('Sweep method did not converge')
end

bisection.m
function [mu, mu b log, s b log] = bisection(params, tol)
mu low = 0O;
mu_high = 1;
mu b log = [];
s b log = [];
if distanceResidual (mu_high, params) < 0
disp('Bisection method did not converge');
end
while (mu high - mu low) > tol
mu mid = (mu_low + mu_high)/2;
s mid = simulateRover (mu _mid, params);
mu b log(end+l) = mu mid;
s b log(end+l) = s mid;
if distanceResidual (mu_mid, params) >= 0 % pick the upper half to
% bisect if mu is greater than the midpint
mu _high = mu mid;
else

mu low = mu mid; % % pick the lower half to bisect if mu is less
% than the midpint

end

end

mu = mu_high;

end

secant.m

function [mu, mu se log, s se log] = secant(mu0, mul, params, tol, maxIter)

% EMPTY ARRAYS FOR LATER PLOT
mu_se log = [];
s se log = [];
f0 = distanceResidual (mu0O, params);
f1l = distanceResidual (mul, params);
for k = l:maxIter
mu2 = mul - fl1* (mul - muO)/(f1 - £0);

% POPULATES PLOT ARRAYS

s2 = simulateRover (mu2, params);
mu_se log(end+l) = mu2;
s_se log(end+l) = s2;

X

% RECURSES UNTIL TOLERANCE IS MET
if abs(mu2 - mul) < tol
mu = mu2;
return
end
mu0 = mul;

fo = f1;
mul = mu2;
fl = distanceResidual (mul, params);
end
disp ('Secant method did not converge'); % display message if able to exit
% out of loop without finding solution
end
shooting.m
function [mu, mu sh log, s sh log] = shooting(mu guess, params, tol, maxIter,
dmu)
mu sh log = [];
s sh log = []; % empty array for plotting

o)

mu = mu_guess; % intial shot
s_end = simulateRover (mu, params);

mu_sh log(end+l) = mu; % populate array with mu/distance travelable values
s _sh log(end+l) = s end;

for k = l:maxIter
res = distanceResidual (mu, params);

if abs(res) < tol
return
end

% FINITE DIFFERENCE SLOPE
res2 = distanceResidual (mu + dmu, params);
dres_dmu = (res2 - res)/dmu;

% NEWTON UPDATING
mu = mu - res/dres dmu;

X

% CLAMPING
mu = max (0, min(mu, 1));
end
disp ('Shooting method did not converge');
end

Validation:

The model’s estimation seems sound. It varies as expected: more difficult terrain requires a
higher coefficient of friction in order to better utilize the force from the engine. The model
displays the error ranges in computation between the various numerical methods and why
bisection may be best for an undefined # range. In practice, a # value of over 2 is not practical;
instead, one could aim for higher initial velocity or attempt to circumvent the slope by winding
up it. Real life estimations of friction coefficients range from 0.1 to 0.7, making 0.45 within a
reasonable range. 1 as an upper bound for M is likely overambitious, as it is difficult to maintain
traction with the moon’s surface.

References:

Dorfmann, Luis. "Various Canvas Materials." Fa25-ES-0055-01-Numerical Methods Dec. 2025,
Tufts University, Medford, Canvas, https://canvas.tufts.edu/courses/67228.

National Aeronautics and Space Administration. Lunar Surface Data Book: Baseline. 2025.
NASA Technical Reports Server, ntrs.nasa.gov.

National Aeronautics and Space Administration. Natural Environmental Design Criteria
Guidelines for Use in Aerospace Vehicle Development. NASA, 1969.

Wong, J. Y. Theory of Ground Vehicles. 4th ed., John Wiley & Sons, 2008.

Hall, Nancy. “Moon | Glenn Research Center | NASA.” Glenn Research Center | NASA, 20 Nov.
2023, www].grc.nasa.gov/beginners-guide-to-aeronautics/moon/.

ChatGPT, 17 December 2025. version 5.1, OpenAl, 9 Dec. 2025, chat.openai.com/chat.

Papakonstantinou, Joanna M, and Richard A Tapia. “Origin and Evolution of the Secant Method
in One Dimension.” American Mathematical Monthly, vol. 120, no. 6, 1 Jan. 2013, pp. 500-500,

https://doi.org/10.4169/amer.math.monthly.120.06.500. Cited through AI Overview.

https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://canvas.tufts.edu/courses/67228
http://www1.grc.nasa.gov/beginners-guide-to-aeronautics/moon/
http://chat.openai.com/chat
https://doi.org/10.4169/amer.math.monthly.120.06.500

