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Title: 
Moon Rover Wheel Coefficient 
 
Description:  
This program solves for the minimum viable value of static friction coefficient between a rover’s 
wheels and the moon that allows the rover to surmount a hill whose profile is modeled by a user 
set function. The final value is dependent on a series of parameters that have both a default value 
and are settable by the user before running the script. 
 
Inputs:  
Separated by entity, here are the largely customizable inputs: 

●​ Rover: Wheel diameter, friction coefficient, initial velocity, hill profile, hill distance, 
motor torque, force of gravity of the moon (CONST), weight 

●​  Simulation: maximum timestep, minimum and maximum  
Note: gravitational force of the moon is set as a constant to maintain the use case of the program. 
A maximum hill size is not assumed to be large enough for the gravitational pull of the moon to 
vary with height.  
 
Outputs: 

●​ Calculates torque and net forces in order to determine if the rover can surmount the hill 
○​ Recurses the problem with a higher/different coefficient of friction if the rover is 

unable to make it up the hill 
○​ States the problem problem is not possible with the chosen inputs if  

●​ Prints out all final calculated values 
●​ Creates plots of the distance the rover was able to make it up the hill relative to the 

coefficient of friction of its wheels for various methods 
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Appendix I, Simulation and Mathematical Details: 
The coefficient of friction is static because there is no slippage in the wheel at the moment it 
turns. The net force on the rover (positive directionally defined as moving up the hill) is given by 
the following equation: 
 

 
 
The uphill motor force is limited by the coefficient of friction, as low contact/interactions with 
the hill leads to slippage and inefficient use of the motor. Thus, the MATLAB minimum function 
is used to determine the upwards force: 
 

 
The drag force is defined: 
 

 
 
However, space is in a vacuum and therefore there is no fluid for the rover to be moving through. 

. Thus, drag force can be discounted and the surface area/relative size of the rover is 
irrelevant. The gravitational force downwards along the slope: 

 
 

 
 and  are user defined, and  m/s by Nasa’s published research.  

 
Numerical Methods: 
Runge Kutta (Dormand–Prince) through ode45() MATLAB function 
Bisection Method 
Secant Method for root finding 
Newton Style Shooting 
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Appendix II, Outputs: 
Case 1: All methods converge and a  of 0.45 is estimated. Initial values: mass = 50 kg, radius = 
0.1 meters, torque = 100 Nm, initial velocity = 3.5 meters per second,  = 0.02, required 
distance = 10 meters, function = , derivative of function =  
 

 
 
RESULTS: 
Sweep Method:    mu = 0.46000 
Bisection:       mu = 0.44745 
Secant Method:   mu = 0.44750 
Shooting Method: mu = 0.30000 
 
Case 2: Steeper slope and slower initial velocity lead to a  outside of the target range. Attempts 
to converge shown. Initial values: mass = 50 kg, radius = 0.1 meters, torque = 100 Nm, initial 
velocity = 1.2 meters per second,  = 0.02, required distance = 10 meters, function = , 
derivative of function =  
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Sweep method did not converge 
Bisection method did not converge 
Shooting method did not converge 
 
RESULTS: 
Sweep Method:    mu = 0.98000 
Bisection:       mu = 0.99994 
Secant Method:   mu = 2.19081 
Shooting Method: mu = 0.30000 
 
The best guesses for the sweep and bisection method are near one, as that was the set upper limit 
for . The secant method is open boundary, allowing it to solve for an accurate .  
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Appendix III, Code: 
Ho.m 
clear; clc; 
 
% SET AND INITIAL VALUES 
params.g  = 1.62; % gravitational force of the moon 
tol = 1e-4;       % tolerance for secant and shooting methods 
maxIter = 50;     % maximum iterations for secant and shooting methods 
 
% USER ADJUSTABLE PARAMETERS 
params.m  = 50;   % rover mass in kilograms 
params.r  = 0.1;  % wheel radius in meters 
params.Tm = 100;  % motor torque in newton meters 
params.v0 = 1.2;  % intial velocity before the hill 
dmu = 0.02;       % delta mu for ode45() 
params.s_required = 10;       % required hill distance for a successful run 
params.yfun = @(x) 0.6*x.^2;  % function profile of the hill 
params.dydx = @(x) 1.2*x;     % derivative of the function profile of the hill 
 
% CALL FUNCTIONS 
[mus, mu_s_log, s_s_log]   = sweep(params, dmu); 
[mub, mu_b_log, s_b_log]   =  bisection(params, tol); 
[muse, mu_se_log, s_se_log] = secant(0.1, 0.5, params, tol, maxIter); 
[mush, mu_sh_log, s_sh_log] = shooting(0.3, params, tol, maxIter, dmu); 
 
% PLOT RESULTS 
figure; 
plot(mu_s_log, s_s_log, 'o-', 'LineWidth', 1.5); 
hold on; 
plot(mu_b_log,   s_b_log,   's-', 'LineWidth', 1.5); 
plot(mu_se_log,   s_se_log,   '^-', 'LineWidth', 1.5); 
plot(mu_sh_log, s_sh_log, 'd-', 'LineWidth', 1.5); 
yline(params.s_required,'--r','Required Distance'); 
xlabel('\mu'); 
ylabel('Arc Length Traveled'); 
title('Convergence Behavior of Different Numerical Methods'); 
legend('Sweep','Bisection','Secant','Shooting','Location','best'); 
grid on; 
 
% PRINT RESULTS 
fprintf('\nRESULTS:\n'); 
fprintf('Sweep Method:    mu = %.5f\n', mu_s_log(end)); 
fprintf('Bisection:       mu = %.5f\n', mu_b_log(end)); 
fprintf('Secant Method:   mu = %.5f\n', mu_se_log(end)); 
fprintf('Shooting Method: mu = %.5f\n', mu_sh_log(end)); 

——————————————————————————————————————— 
 

 



simulateRover.m 
function s_end = simulateRover(mu, params) 
   params.mu = mu; % set mu parameter if fed directly into function 
  
   y0 = [0; params.v0; 0];   % horizontal position, velocity, arc distance 
travelled 
   tspan = [0 100]; 
   
   options = odeset('Events', @(t,y) stopEvents(t,y,params)); 
   
   [t,y] = ode45(@(t,y) roverODE(t,y,params), tspan, y0, options); 
  
   s_end = y(end,3); 
end 

——————————————————————————————————————— 
 

roverODE.m 
function dydt = roverODE(~, y, params) 
x = y(1);   % horizontal position 
v = y(2);   % velocity along slope 
s = y(3);   % arc length 
yp = params.dydx(x); 
theta = atan(yp); % angle of slope 
 
% FORCES 
N = params.m * params.g * cos(theta);                 % normal force 
F_drive = min(params.Tm / params.r, params.mu * N);   % motor force 
 
% ACCELERATION 
dvdt = (F_drive - params.m * params.g * sin(theta)) / params.m; 
 
% POSITION 
dxdt = v * cos(theta);   % horizontal position 
dsdt = v;                % arc position 
dydt = [dxdt; dvdt; dsdt]; 
end 

——————————————————————————————————————— 

stopEvents.m 
function [value, isterminal, direction] = stopEvents(~, y, params) 
   s = y(1); % pull arc position from array 
   v = y(2); % pull velocity from array 
   
   value = [v - 1e-4; params.s_required - s]; 
   isterminal = [1; 1];  % terminate if speed = 0 
   direction = [-1; -1]; % terminate if reaches required distance 
end 

——————————————————————————————————————— 
 



distanceResidual.m 
function res = distanceResidual(mu, params) 
   % DETERMINES IF THE ROVER MADE IT FAR ENOUGH TO CONSIDER A SUCCESS 
   s_end = simulateRover(mu, params); 
   res = s_end - params.s_required; 
end 

——————————————————————————————————————— 
 

sweep.m 
function [mu, mu_s_log, s_s_log] = sweep(params, dmu) 
   % INITIALIZE MU, PLOT ARRAYS 
   mu = 0; 
   mu_s_log = []; 
   s_s_log  = []; 
   while mu <= 1 
       s_end = simulateRover(mu, params); 
       mu_s_log(end+1) = mu; 
       s_s_log(end+1)  = s_end; 
       if s_end >= params.s_required % exit out and return mu if appropriate 
distance 
           return 
       end 
       mu = mu + dmu; % iterate mu by increasing it by user defined amount 
   end 
   disp('Sweep method did not converge') 
end 

——————————————————————————————————————— 
 
bisection.m 
function [mu, mu_b_log, s_b_log] = bisection(params, tol) 
mu_low = 0; 
mu_high = 1; 
mu_b_log = []; 
s_b_log  = []; 
if distanceResidual(mu_high, params) < 0 
   disp('Bisection method did not converge'); 
end 
while (mu_high - mu_low) > tol 
   mu_mid = (mu_low + mu_high)/2; 
   s_mid = simulateRover(mu_mid, params); 
   mu_b_log(end+1) = mu_mid; 
   s_b_log(end+1)  = s_mid; 
   if distanceResidual(mu_mid, params) >= 0 % pick the upper half to 
       % bisect if mu is greater than the midpint 
       mu_high = mu_mid; 
   else 
       mu_low = mu_mid; % % pick the lower half to bisect if mu is less 
       % than the midpint 



   end 
end 
mu = mu_high; 
end 

——————————————————————————————————————— 

 
secant.m 
function [mu, mu_se_log, s_se_log] = secant(mu0, mu1, params, tol, maxIter) 
% EMPTY ARRAYS FOR LATER PLOT 
mu_se_log = []; 
s_se_log  = []; 
f0 = distanceResidual(mu0, params); 
f1 = distanceResidual(mu1, params); 
for k = 1:maxIter 
   mu2 = mu1 - f1*(mu1 - mu0)/(f1 - f0); 
 
   % POPULATES PLOT ARRAYS 
   s2 = simulateRover(mu2, params); 
   mu_se_log(end+1) = mu2; 
   s_se_log(end+1)  = s2; 
 
   % RECURSES UNTIL TOLERANCE IS MET 
   if abs(mu2 - mu1) < tol 
       mu = mu2; 
       return 
   end 
   mu0 = mu1; 
   f0  = f1; 
   mu1 = mu2; 
   f1  = distanceResidual(mu1, params); 
end 
disp('Secant method did not converge'); % display message if able to exit 
% out of loop without finding solution 
end 

——————————————————————————————————————— 
 
shooting.m 
function [mu, mu_sh_log, s_sh_log] = shooting(mu_guess, params, tol, maxIter, 
dmu) 
   mu_sh_log = []; 
   s_sh_log  = [];   % empty array for plotting 
   mu = mu_guess; % intial shot 
   s_end = simulateRover(mu, params); 
   mu_sh_log(end+1) = mu; % populate array with mu/distance travelable values 
   s_sh_log(end+1)  = s_end; 
   
   for k = 1:maxIter 
       res = distanceResidual(mu, params); 



   
       if abs(res) < tol 
           return 
       end 
   
       % FINITE DIFFERENCE SLOPE 
       res2 = distanceResidual(mu + dmu, params); 
       dres_dmu = (res2 - res)/dmu; 
   
       % NEWTON UPDATING 
       mu = mu - res/dres_dmu; 
   
       % CLAMPING 
       mu = max(0, min(mu, 1)); 
   end 
   disp('Shooting method did not converge'); 
end 

——————————————————————————————————————— 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Validation: 
The model’s estimation seems sound. It varies as expected: more difficult terrain requires a 
higher coefficient of friction in order to better utilize the force from the engine. The model 
displays the error ranges in computation between the various numerical methods and why 
bisection may be best for an undefined  range. In practice, a  value of over 2 is not practical; 
instead, one could aim for higher initial velocity or attempt to circumvent the slope by winding 
up it. Real life estimations of friction coefficients range from 0.1 to 0.7, making 0.45 within a 
reasonable range. 1 as an upper bound for  is likely overambitious, as it is difficult to maintain 
traction with the moon’s surface. 
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