
Isabelle Ho
Luis Dorfmann
Numerical Methods
17 December 2025

Title:
Moon Rover Wheel Coefficient

Description:
This program solves for the minimum viable value of static friction coefficient between a rover’s
wheels and the moon that allows the rover to surmount a hill whose profile is modeled by a user
set function. The final value is dependent on a series of parameters that have both a default value
and are settable by the user before running the script.

Inputs:
Separated by entity, here are the largely customizable inputs:

●​ Rover: Wheel diameter, friction coefficient, initial velocity, hill profile, hill distance,
motor torque, force of gravity of the moon (CONST), weight

●​ Simulation: maximum timestep, minimum and maximum
Note: gravitational force of the moon is set as a constant to maintain the use case of the program.
A maximum hill size is not assumed to be large enough for the gravitational pull of the moon to
vary with height.

Outputs:

●​ Calculates torque and net forces in order to determine if the rover can surmount the hill
○​ Recurses the problem with a higher/different coefficient of friction if the rover is

unable to make it up the hill
○​ States the problem problem is not possible with the chosen inputs if

●​ Prints out all final calculated values
●​ Creates plots of the distance the rover was able to make it up the hill relative to the

coefficient of friction of its wheels for various methods

https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu_k%20%3D1#0

Appendix I, Simulation and Mathematical Details:
The coefficient of friction is static because there is no slippage in the wheel at the moment it
turns. The net force on the rover (positive directionally defined as moving up the hill) is given by
the following equation:

The uphill motor force is limited by the coefficient of friction, as low contact/interactions with
the hill leads to slippage and inefficient use of the motor. Thus, the MATLAB minimum function
is used to determine the upwards force:

The drag force is defined:

However, space is in a vacuum and therefore there is no fluid for the rover to be moving through.

. Thus, drag force can be discounted and the surface area/relative size of the rover is
irrelevant. The gravitational force downwards along the slope:

 and are user defined, and m/s by Nasa’s published research.

Numerical Methods:
Runge Kutta (Dormand–Prince) through ode45() MATLAB function
Bisection Method
Secant Method for root finding
Newton Style Shooting

https://www.codecogs.com/eqnedit.php?latex=F_%7Bnet%7D%20%3D%20F_%7Bmotor%7D%20-%20F_%7Bdrag%7D%20-%20F_%7Bgravity%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7Bmin%7D%5Cleft(%5Cfrac%7B%5Ctau%7D%7Br%7D%2C%20%5Cmu_smg%5Ccos%5Ctheta%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=F_D%20%3D%20C_DA%5Cfrac%7B%5Crho%20V%5E2%7D%7B2%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Crho%20%3D%200#0
https://www.codecogs.com/eqnedit.php?latex=mg%5Csin%5Ctheta#0
https://www.codecogs.com/eqnedit.php?latex=m#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta#0
https://www.codecogs.com/eqnedit.php?latex=g%20%3D%201.62#0

Appendix II, Outputs:
Case 1: All methods converge and a of 0.45 is estimated. Initial values: mass = 50 kg, radius =
0.1 meters, torque = 100 Nm, initial velocity = 3.5 meters per second, = 0.02, required
distance = 10 meters, function = , derivative of function =

RESULTS:
Sweep Method: mu = 0.46000
Bisection: mu = 0.44745
Secant Method: mu = 0.44750
Shooting Method: mu = 0.30000

Case 2: Steeper slope and slower initial velocity lead to a outside of the target range. Attempts
to converge shown. Initial values: mass = 50 kg, radius = 0.1 meters, torque = 100 Nm, initial
velocity = 1.2 meters per second, = 0.02, required distance = 10 meters, function = ,
derivative of function =

https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=0.3x%5E2#0
https://www.codecogs.com/eqnedit.php?latex=0.3x#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=0.6x%5E2#0
https://www.codecogs.com/eqnedit.php?latex=1.2x#0

Sweep method did not converge
Bisection method did not converge
Shooting method did not converge

RESULTS:
Sweep Method: mu = 0.98000
Bisection: mu = 0.99994
Secant Method: mu = 2.19081
Shooting Method: mu = 0.30000

The best guesses for the sweep and bisection method are near one, as that was the set upper limit
for . The secant method is open boundary, allowing it to solve for an accurate .

https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0

Appendix III, Code:
Ho.m
clear; clc;

% SET AND INITIAL VALUES
params.g = 1.62; % gravitational force of the moon
tol = 1e-4; % tolerance for secant and shooting methods
maxIter = 50; % maximum iterations for secant and shooting methods

% USER ADJUSTABLE PARAMETERS
params.m = 50; % rover mass in kilograms
params.r = 0.1; % wheel radius in meters
params.Tm = 100; % motor torque in newton meters
params.v0 = 1.2; % intial velocity before the hill
dmu = 0.02; % delta mu for ode45()
params.s_required = 10; % required hill distance for a successful run
params.yfun = @(x) 0.6*x.^2; % function profile of the hill
params.dydx = @(x) 1.2*x; % derivative of the function profile of the hill

% CALL FUNCTIONS
[mus, mu_s_log, s_s_log] = sweep(params, dmu);
[mub, mu_b_log, s_b_log] = bisection(params, tol);
[muse, mu_se_log, s_se_log] = secant(0.1, 0.5, params, tol, maxIter);
[mush, mu_sh_log, s_sh_log] = shooting(0.3, params, tol, maxIter, dmu);

% PLOT RESULTS
figure;
plot(mu_s_log, s_s_log, 'o-', 'LineWidth', 1.5);
hold on;
plot(mu_b_log, s_b_log, 's-', 'LineWidth', 1.5);
plot(mu_se_log, s_se_log, '^-', 'LineWidth', 1.5);
plot(mu_sh_log, s_sh_log, 'd-', 'LineWidth', 1.5);
yline(params.s_required,'--r','Required Distance');
xlabel('\mu');
ylabel('Arc Length Traveled');
title('Convergence Behavior of Different Numerical Methods');
legend('Sweep','Bisection','Secant','Shooting','Location','best');
grid on;

% PRINT RESULTS
fprintf('\nRESULTS:\n');
fprintf('Sweep Method: mu = %.5f\n', mu_s_log(end));
fprintf('Bisection: mu = %.5f\n', mu_b_log(end));
fprintf('Secant Method: mu = %.5f\n', mu_se_log(end));
fprintf('Shooting Method: mu = %.5f\n', mu_sh_log(end));

———————————————————————————————————————

simulateRover.m
function s_end = simulateRover(mu, params)
 params.mu = mu; % set mu parameter if fed directly into function

 y0 = [0; params.v0; 0]; % horizontal position, velocity, arc distance
travelled
 tspan = [0 100];

 options = odeset('Events', @(t,y) stopEvents(t,y,params));

 [t,y] = ode45(@(t,y) roverODE(t,y,params), tspan, y0, options);

 s_end = y(end,3);
end

———————————————————————————————————————

roverODE.m
function dydt = roverODE(~, y, params)
x = y(1); % horizontal position
v = y(2); % velocity along slope
s = y(3); % arc length
yp = params.dydx(x);
theta = atan(yp); % angle of slope

% FORCES
N = params.m * params.g * cos(theta); % normal force
F_drive = min(params.Tm / params.r, params.mu * N); % motor force

% ACCELERATION
dvdt = (F_drive - params.m * params.g * sin(theta)) / params.m;

% POSITION
dxdt = v * cos(theta); % horizontal position
dsdt = v; % arc position
dydt = [dxdt; dvdt; dsdt];
end

———————————————————————————————————————

stopEvents.m
function [value, isterminal, direction] = stopEvents(~, y, params)
 s = y(1); % pull arc position from array
 v = y(2); % pull velocity from array

 value = [v - 1e-4; params.s_required - s];
 isterminal = [1; 1]; % terminate if speed = 0
 direction = [-1; -1]; % terminate if reaches required distance
end

———————————————————————————————————————

distanceResidual.m
function res = distanceResidual(mu, params)
 % DETERMINES IF THE ROVER MADE IT FAR ENOUGH TO CONSIDER A SUCCESS
 s_end = simulateRover(mu, params);
 res = s_end - params.s_required;
end

———————————————————————————————————————

sweep.m
function [mu, mu_s_log, s_s_log] = sweep(params, dmu)
 % INITIALIZE MU, PLOT ARRAYS
 mu = 0;
 mu_s_log = [];
 s_s_log = [];
 while mu <= 1
 s_end = simulateRover(mu, params);
 mu_s_log(end+1) = mu;
 s_s_log(end+1) = s_end;
 if s_end >= params.s_required % exit out and return mu if appropriate
distance
 return
 end
 mu = mu + dmu; % iterate mu by increasing it by user defined amount
 end
 disp('Sweep method did not converge')
end

———————————————————————————————————————

bisection.m
function [mu, mu_b_log, s_b_log] = bisection(params, tol)
mu_low = 0;
mu_high = 1;
mu_b_log = [];
s_b_log = [];
if distanceResidual(mu_high, params) < 0
 disp('Bisection method did not converge');
end
while (mu_high - mu_low) > tol
 mu_mid = (mu_low + mu_high)/2;
 s_mid = simulateRover(mu_mid, params);
 mu_b_log(end+1) = mu_mid;
 s_b_log(end+1) = s_mid;
 if distanceResidual(mu_mid, params) >= 0 % pick the upper half to
 % bisect if mu is greater than the midpint
 mu_high = mu_mid;
 else
 mu_low = mu_mid; % % pick the lower half to bisect if mu is less
 % than the midpint

 end
end
mu = mu_high;
end

———————————————————————————————————————

secant.m
function [mu, mu_se_log, s_se_log] = secant(mu0, mu1, params, tol, maxIter)
% EMPTY ARRAYS FOR LATER PLOT
mu_se_log = [];
s_se_log = [];
f0 = distanceResidual(mu0, params);
f1 = distanceResidual(mu1, params);
for k = 1:maxIter
 mu2 = mu1 - f1*(mu1 - mu0)/(f1 - f0);

 % POPULATES PLOT ARRAYS
 s2 = simulateRover(mu2, params);
 mu_se_log(end+1) = mu2;
 s_se_log(end+1) = s2;

 % RECURSES UNTIL TOLERANCE IS MET
 if abs(mu2 - mu1) < tol
 mu = mu2;
 return
 end
 mu0 = mu1;
 f0 = f1;
 mu1 = mu2;
 f1 = distanceResidual(mu1, params);
end
disp('Secant method did not converge'); % display message if able to exit
% out of loop without finding solution
end

———————————————————————————————————————

shooting.m
function [mu, mu_sh_log, s_sh_log] = shooting(mu_guess, params, tol, maxIter,
dmu)
 mu_sh_log = [];
 s_sh_log = []; % empty array for plotting
 mu = mu_guess; % intial shot
 s_end = simulateRover(mu, params);
 mu_sh_log(end+1) = mu; % populate array with mu/distance travelable values
 s_sh_log(end+1) = s_end;

 for k = 1:maxIter
 res = distanceResidual(mu, params);

 if abs(res) < tol
 return
 end

 % FINITE DIFFERENCE SLOPE
 res2 = distanceResidual(mu + dmu, params);
 dres_dmu = (res2 - res)/dmu;

 % NEWTON UPDATING
 mu = mu - res/dres_dmu;

 % CLAMPING
 mu = max(0, min(mu, 1));
 end
 disp('Shooting method did not converge');
end

———————————————————————————————————————

Validation:
The model’s estimation seems sound. It varies as expected: more difficult terrain requires a
higher coefficient of friction in order to better utilize the force from the engine. The model
displays the error ranges in computation between the various numerical methods and why
bisection may be best for an undefined range. In practice, a value of over 2 is not practical;
instead, one could aim for higher initial velocity or attempt to circumvent the slope by winding
up it. Real life estimations of friction coefficients range from 0.1 to 0.7, making 0.45 within a
reasonable range. 1 as an upper bound for is likely overambitious, as it is difficult to maintain
traction with the moon’s surface.

References:

Dorfmann, Luis. "Various Canvas Materials." Fa25-ES-0055-01-Numerical Methods Dec. 2025,
Tufts University, Medford, Canvas, https://canvas.tufts.edu/courses/67228.

National Aeronautics and Space Administration. Lunar Surface Data Book: Baseline. 2025.
NASA Technical Reports Server, ntrs.nasa.gov.

National Aeronautics and Space Administration. Natural Environmental Design Criteria
Guidelines for Use in Aerospace Vehicle Development. NASA, 1969.

Wong, J. Y. Theory of Ground Vehicles. 4th ed., John Wiley & Sons, 2008.

Hall, Nancy. “Moon | Glenn Research Center | NASA.” Glenn Research Center | NASA, 20 Nov.
2023, www1.grc.nasa.gov/beginners-guide-to-aeronautics/moon/.

ChatGPT, 17 December 2025. version 5.1, OpenAI, 9 Dec. 2025, chat.openai.com/chat.

Papakonstantinou, Joanna M, and Richard A Tapia. “Origin and Evolution of the Secant Method
in One Dimension.” American Mathematical Monthly, vol. 120, no. 6, 1 Jan. 2013, pp. 500–500,
https://doi.org/10.4169/amer.math.monthly.120.06.500. Cited through AI Overview.

https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://canvas.tufts.edu/courses/67228
http://www1.grc.nasa.gov/beginners-guide-to-aeronautics/moon/
http://chat.openai.com/chat
https://doi.org/10.4169/amer.math.monthly.120.06.500

